
-AI26558 PROTOCOL SPECIFICA TION REPORT(U) SYSTEM DEVELOPMENT I/
CORP SANTA MONICA CA G A SIMON 29 MAR 82
SDC-TM-7172/301/O0 DCAO-2-C-0036

NCLASSIFIED F/G 17/2 NL

IIIIIIIIII4IEIIIIIIIIIIII
IIIIIIIIIIIIIu
IIIIIIIIL

611 6I1.8

11111_L1.25 14 .

MICROCOPY RESOLUIlON TEST CHART

NATIONAL BIRI-1 Mf MIANL) R ,

System Development Corporation
2500 Colorado Avenue. Santa Monica. CA 90406. Telephone (213) 820-4111

series bazse no./vol./reisue

j > 7172/301/00
author 4U*Asi4

Gerald A. Simon

technical
David . ufman

l ii i a worlking paper releaserl . Switzky -

for

This document was produced by Charles A. SavantSystm Dveop, eot Copoafon in p~u . of .Contrac t DCA100-
St

82-C-0036 date 3/29/82

DCEC PROTOCOLS STANDARDIZATION PROGRAM ,-

1o 983
PROTOCOL SPECIFICATION REPORT

APR

ABSTRACT

This document presents a set of guidelines for precise
specification of communication protocol services and
mechanisms. First, the requirements for a complete
protocol specification are outlined. Based on these
requirements a conceptual framework for a protocol
specification is discussed. A description of each of
the components of a protocol specification is then
presented along with a description of the protocol

0..- specification format and syntax requirements. The
C: specification approach incorporates an extended finite
Cstate machine technique f6r formal definition of

protocol services and mechanisms.

P304 0 3

IINCI AS , YFT Fn
SECURITY CLASSIFICATION OF THIS PAGE (Won 0.1. Enleed)_

REPORT'________________PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3, RECIPIENT'S CATALOG NUMBER

7 1 7 2 / 3 0 1 / 0 0 S .D - T Y P E O FR E P OR_ & P E RIO C O V E R E

4. TITLE (amd Subtitle) S. TyPE OF REPORT A PERIOD COVEREO

Protocol Specification Report interim technical report

6. PERFORMING O'AG, REPORT NUMBER

7. AUTHOR(*) 0. CONTRACT OR GRANT NUMBER(.)

Gerald A. Simon DCA100-82-C-0036
9 PERFORMING ORGANIZATION NAME ANC) ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA 6 WORK UNIT NUMBERS

System Development Corporation P.E. 33126K
2500 Colorado Ave. Task 1053.558
Santa Monicd, CA 90406

II CONTROLLING OFFICE NAME AND ADDRESS IZ. REPORT DATE

Defense Communications Engineering Center 29 Mar 82
Switched Networks Engineering Directorate 13. NUMBER OF PAGES

1860 Wiehle Ave., Reston, VA 22090 45
14 MONITORING AGENCY NAME & ADDRESS(if different Iron Controlling Olfice) 1S, SECURITY CLASS. (of this report)

N/A Unclassified

I5a. DECLASSIFICATION DOWNGRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the absire(t entered in Mock JO. it different Irom Report)

N/A

I SUPPLEMENTARY NOTES

This document represents results of interim studies which are continuing
at the DCEC of DCA.

19 KEY WORDS (Continue on reverse side if necessary and identity by bfock number)

Protocols, Data Communications, Data Networks, Protocol Standardization,
Protocol Specification

20 ABSTRACT (Continue on reverse side If necessary and Identify bv block n,,ber)

This document presents a set of guidelines for precise specification of
compmunication protocol services and mechanisms. First, the requirements for a
complete protocol specific.-tion are outlined. Based on these requirements a
conceptual framework for a protocol specification is discussed. A description
of each of the components of a protocol specification is then presented along
with a description of the protocol specification format and syntax requirements.
The specification approach incorporates an extended finite state machine tech-
nique for formal definition of protocol services and mechanisms.

DO ,JAN3,, 1473 - "ON OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIE, PAGE (When Data Entered)

FORWARD

This report is a revised version of the July, 1981 Protocol Specification
Report[13]. The major updates and changes incorporated into this revision are
centered around several extensions to the basic state machine modelling
technique. In addition to these extensions, minor corrections and
clarifications to the format rules have been included.

The state machine modelling technique has been enhanced in three major areas.

First, the basic data types have been expanded to include data types for
queues and stacks in addition to the pre-defined Ada types. Secondly, an
optional "split state vector" approach to modelling of delay aspects of
protocol services has been added. The third extension provides for the
separation of implementation dependent aspects of the protocol into separate
action procedures.

The protocol specification techniques and formats presented in this report

have been used as the basis for the production of the proposed DoD standard
specifications for the Transmission Control Protocol (TCP) E21 and for the
Internet Protocol (IP) n11. These specifications serve as examples of the
application of these guidelines to the specification of full scale network
protocols. The TCP and IP specifications are therefore considered to be
companion documents to this report.

hV005100For

I

1'*1 T

CONTENTS

1. INTRODUCTION .. 2

2. PROTOCOL SPECIFICATION FRAMEWORK....................................... 3

3. SPECIFICATION GUIDELINES ... 8
3.1 OVERVIEW .. 8
3.2 SERVICES PROVIDED TO THE UPPER LAYER 9
3.3 UPPER LAYER SERVICE/INTERFACE SPECIFICATIONS 10
3.4 SERVICES REQUIRED FROM THE LOWER LAYER 11
3.5 LOWER LAYER SERVICE/INTERFACE SPECIFICATION 11
3.6 PROTOCOL ENTITY SPECIFICATION 12
3.7 EXECUTION ENVIRONMENT REQUIREMENTS 13

4. EXTENDED STATE MACHINE MODELLING TECHNIQUE 14
4.1 BASIC TECHNIQUE FOR EXTENDED STATE MACHINE SPECIFICATIONS14

4.1.1 Machine Instantiation Identifier 15
4.1.2 State Diagram 15
4.1.3 State Vector 15
4.1.4 Data Structures 16
4.1.5 Event List 16
4.1.6 Events and Actions 17

4.2 SUBORDINATE STATE MACHINES .. 22
4.2.1 Invocation of Subordinate Machines 23
4.2.2 Specification of Subordinate Machines 26

4.3 EXTENSIONS FOR SERVICE/INTERFACE SPECIFICATION 26
4.3.1 Non-Deterministic Actions 26
4.3.2 Partitioned State Vectors 27

5. PROTOCOL SPECIFICATION FORMAT .. 29
5.1 BASIC STRUCTURE .. 29

5.1.1 Overview 29
5.1.2 Services Provided to Upper Layer 29
5.1.3 Upper Layer Service/Interface Specification 29
5.1.4 Services Required From Lower Layer 32
5.1.5 Lower Layer Service/Interface Specification 32
5.1.6 Protocol Entity Specification 33
5.1.7 Execution Environment Requirements 34
5.1.8 Glossary 34
5.1.9 Bibliography '34

5.2 EXTENDED STATE MACHINE FORMATS 35
5.2.1 Format for Simple (Non-hierarchical) Extended State

Machines 37
5.2.2 Format for Hierarchical Extended State Machines 39

5.3 CORRESPONDENCE REQUIREMENTS 41
5.3.1 Upper Layer Service/Interface Specification 41
5.3.2 Lower Layer Service/Interface Specification 42
5.3.3 Protocol Entity Specification 43
5.3.4 Execution Enviroment Requirements 44

6. BIBLIOGRAPHY .. 45

I System Development Corporation
29 March 1982 -2- TM-7172/301/00

1. INTRODUCTION

As the development of distributed systems and computer networks increases in
importance, the need for unambiguous and complete specification of
communication protocols becomes more apparent. This need is particularly
important with respect to protocol standards which must be implemented by wide
communities of users with diverse equipment. The purpose of this document is
to provide a format, and set of specification techniques, for the production
of complete and unambiguous protocol specifications. Unfortunately, use of
such a document cannot completely force production of perfect specifications.
This document is intended, however, to encourage increased specification
completeness and clarity by providing appropriate techniques and requirements
for the specification of each portion of the protocol design.

One of the goals of this protocol specification report is to provide for
precise specification of both protocol services and mechanisms. A service
specification defines the functional requirements which the corresponding
protocol design must satisfy, without implying any specific protocol design or
set of mechanisms. The service specification provides a focus for the
protocol design and thus a standard against which the protocol is measured.
In a similar manner, the protocol design specifies requirements for the
operation of protocol implementations, not a particular implementation.
Naturally, the protocol specification must define enough about the protocol's
operation to insure that separate implementations of the protocol will
interoperate. Thus while the protocol specification should not needlessly
restrict implementation choices, it is better to overly limit zhe
implementation than to omit ne~eded requirements and possibly produce protocol
implementations unable to communicate. The techniques presented in these
guidelines are intended to allow precise specification of services and
mechanisms while minimizing restrictions on the protocol design and

implementation respectively.

This report defines the format for a protocol specification document,
describes the syrtax for specification of the protocol design, and summarizes
the key concepts underlying the format and syntax requirements. These items
are addressed in the four sections which follow. The first section provides
motivation for each of the components of a protocol specification, and defines
the conceptual framework for composition of those components to form a
complete specification document. The second section further describes each of
the major parts of a protocol specification. The third section provides a
detailed description of the basic specification vehicle--extended state
machines. The fourth section summarizes the format requirements for a
protocol specification document.

System Development Corporation

29 March 1982 -3- TM-7172/301/00

2. PR~OTOCOL SPECIFICATION FRAMEWORK

These protocol specification guidelines are based upon the commonly accepted
model of a distributed system as a layered hierarchy of protocolsF7, 10] (see
Figure 1). In this model, each individual protocol is said to reside ata
particular layer N. The users of the layer N protocol, the layer N+1
protocols, rely upon services provided by the layer N protocol. In a similar
manner, the layer N protocol itself, relies upon a composite of the services

provided by all of the lower layers. These services are presented to it by

the layer N-i protocol. The module or process which implements an instance of
the protocol is called the protocol entity. A peer relationship exists
between these entities, but actual communication is accomplished via the
layer N-i protocol entities. Figure 1 illustrates this layered model.

USER USER 1LAYER

--- --
I \COMPOSITE SERVICE OF LAYERS/

I N. N-1, AND BELOW /

-- - - - -- - - - - LAYER
PROTOCOL PROTOCOL N
ENTITY ENTITY

-------------------------- ----------

COMPOSITE OF
ALL LOWER LAYERS LAYER

I(N-1 AND BELOW) N-i

Figure 1. Protocol Layering--Services and Mechanisms

A protocol specification should define the protocol from a set of perspectives
derived from this conceptual modelI5I. It is necessary, for example, to
specify the relationship between the layer N protocol being specified, and the
overall system protocol architecture. With'in the context of this protocol
architecture, the layer N protocol is to provide certain services to the

System Development Corporation

29 March 1982 -4- TM-7172/301 /00

layer N+1 users. In a similar mariner, the layer X-1 protocol is expected to
provide cer;ain services to the layer N protocol. These services should be

*explicitly defined. In addition, it is necessary to define the manner in
Jwhich these services are accessed. The interface specifications define such

access interactions. The specification of the mechanisms constituting a
layer N entity have typically received nearly exclusive attention in protocol
specifications. Naturally, the mechanisms must be specified in sufficient
detail to allow implementors to create implementations of the protocol which
can interoperate effectively.

Thus the major sections of a protocol specification as defined in this report
evolve directly from the model. Furthermore, these individual perspectives
are inter-related in a manner which is consistent with the model. As each
section of the protocol specification is described below, this relationship is
examined further.

One component of the protocol's operatior which is frequently ignored Ln
specifying a protocol is the execution environment in which the protocol
exists. It is necessary to specify the minimum requirements which the
protocol imposes upon the execution environment. This requirement is basedI upon the fact that the protocol implementation will utilize system resources
and that its operation may be limited by the availability of resources such as
buffer space and timers.

A protocol specification document produced in accordance with this report
should therefore contain the following sections: 1) Overview, 2) Services
Provided to Upper Layer, 3) Upper Layer Service/Interface Specifications,
4) Services Required from Lower Layer, 5) Lower Layer Service/Interface
Specifications, 6) Protocol Entity Specification, and 7) Execution Environment
Requirements. A glossary of terms and -a bibliography complete the basic1document. It is expected that companion reports to a protocol specification
document wil be develor'ed over time. These reports may address
implementation strategies, experimental results, or suggestions forIassociating real values with variables parameterized in the specification.
Suzh additional reports are not further discussed in this guideline document.

(Ir. genaral, the sections of a protocol specification consist of a combination
of informal, English language descriptions, and formalized descriptions using
ixtended state machine models. This mix is intended to provide an overview
and understanding to the reader of the specification, as well as encouraging
the specifier to provide sufficient detail to allow independent implementation
teams to produce versions of the protocol which will indeed interoperate. The
terminology used here is drawn from both the DoD and ISO communities. The
paragraphs which follow briefly summarize the requirements for each section of
a protocol specification document. Section 3 of this document provides
further detail on the requirements for each protocol specification part. The
extended state machine modelling technique is described in Section 4.

A. Overview

This section is intended to provide an informal introduction to the
protocol and to convey a general understanding of the protocol's

System Development CorporationI29 March 1982 -5- TM-7172/301/00

operation. Hence, it describes the relationship of the protocol to the
protocol system architecture and defines a mcdel of operation for the
protocol utilizing English language descriptions. The overview sectionI is, in fact, a summary of the entire specification and is not required to
define the protocol. Thus if any inconsistencies between the overview
and other sections of the document exist, the formal specification i. to
take precedence over the overview section.

B. Services Provided to the Upper Layer

This section describes informally the global properties of the system as
viewed by the users of the layer N protocol (i.e., the layer N+1
entities). As such, it defines a set of requirements to be fulfilled byBthe layer N protocol in conjunction with a composite of the layer N-1 and
other lower protocol layers. It is important to note that this section
defines requirements and not the manner in which those requirements are
fulfilled. This is necessary in order to insure that the service
specification provides functional requirements for the protocol

mechanisms without placing undue restrictions on the design of the

mechanisms.

C. Upper Layer Service/Interface Specification

This section defines the services provided to upper layer (N+1) entities
in a more formal manner than in Section B, and defines the way in which
these services are accessed. The upper layer interface/service is
defined as an abstract machine. This machine specifies the actions ofI -the composite of the layer N protocol entities and the lower layer
protocols as viewed at the interface between that composite and the users
of the layer N protocol. Thus the events of this abstract machine are1 user (i.e, layer N+1 entity) requests, and the actions are responses to
the users. The abstract machine is specified as a speciali.-.d form of
the extended state machine method described in Section 4 of this
document. In part, this section of a protocol specification provides a
foundation for demonstration of a correspondence between protocol
services required and the mechanisms defined to provide them.

D. Services Required from Lower Layers

This section is analogous to the description of the services provided to
the upper layer. The section defines the services required by the
layer N protocol of the composite of all lower layer protocols (i.e.
layer N-i and below). The distinction between services required and
services provided is significant. The services identified in this
section need only be a subset of the services actually provided by the
aggregation of the lower layer protocols, since the N layer protocol need
not utilize all of the services available from lower layers.

E. Lower Layer Service/Interface Specification

This section is analogous to the upper layer service/interface
specification. It defines the interface between entities at layer N and

System Development Corporation

29 March 1982 -6- TM-71 72/301/00

the composite of the lower layer protocols. Again, the global properties
of the system, in this case the layer N-i and lower layer protocols, are
defined.

F. Protocol Entity Specification

This section defines the internal operation of a layer N protocol entity.
Exact formats of the messages exchanged by peer entities at this protocol
layer are given in order to insure that logically separate layer N
entities can intercommunicate. The protocol entity is formally definedIutilizing the extended state machine method described in Section 4. The
events of this state machine are taken from the description of its three
interfaces--the requests of the local layer N+'1 entity (i.e., a subset ofI the events from the upper layer service/interface machine), the responses
from the lower layer service/ interface machine, and signals from the
execution environment (see G below). Similarly, the actions of this
machine generate the responses, requests, and calls found in the upper
layer service/interface machine, lower layer service/ interface machine,
and execution environment definition respectively. Thus a composite of
an appropriate number (typically two) of the layer N protocol entity
machines, the lower layer service/interface machine, and the execution
environment signals and calls, should be equivalent to the upper layer
service/ interface specification. This potential composition capability
should assist in validating that the protocol specified meets its service
requirements. The relationship between the various formal descriptions
is explored in further detail in Sections 3, 4, and 5 of this document.

G. Execution Environment Requirements

This section defines the various system resource requirements which the
protocol needs for proper operation. This section is not intended to
define a generic operating system. Instead, it is an attempt to extract
the minimum necessary requirements to support the protocol. Frequently,
for example, a protocol mechanism may rely on the execution environment
to support timing related functions via system calls and signaled
responses such as interrupts. Naturally, the exact formulations defined
in the execution environment section may not exist for all rmystems on
which the protocol is implemented. If they do not exist though, the
implementor must create an equivalent service within his execution
environment since the protocol's operation depends upon that resource.

H. Glossary

A protocol specification document will undoubtedly have its own
specialized set of terms, rely upon precise definitions for terms used
elsewhere, and utilize acronyms in place of key phrases or identifiers.
A glossary of such terms is therefore required as a convenience to
readers of the specification.

1. Bibliography

Typically, a protocol design will be based upon the results of previous

3System Development Corporation
29 March 1982 -7- TM-7172/301/00

Idesign and analysis efforts. Furthermore additional background material
or analysis of particular mechanisms may be available in other documents.
A bibliography is required in order to identify further reference
material and to give credit to other related efforts.

System Development Corporation

29 March 1982 8-TM-7172/301/00

3. SPECIFICATION GUIDELINES

This section describes the requirement3 for a protocol specification document

and provides some general guidance on what type of information should be
included in each section of a protocol specification document. As indicated
above, each document should contain seven major sections: Overview, Services
Provided to Upper Layer, Upper Layer Service/Interface Specifications,
Services Required from Lower Layer, Lower Layer Service/Interface
Specifications, Protocol Entity Specification, and Execution Environment
Requirements. In addition, a glossary and list of references should be
included. This section focuses on the major portions of a protocol
specification; each of the seven subsections which follow defines the purpose
and intended contents of a part of a specification document. Section 4 of
this document describes the extended state machine technique used for formal
specification of the interfaces and the protocol entity. Section 5 summarizes
the format requirements for an entire protocol specification document.
Section 5 also defines the relationship between each of the major parts of a
protocol specification and describes the necessary correspondences between
sections of the protocol document resulting from these relationshipl.

Production of a protocol specification requires not only an underst 'rig o f
the required specification syntax, but also an understanding of what iu.d be
included in each section of the specification. The following des tions
attempt to provide such guidance by referring to examples from protc ith
which the reader nay be familiar such as the DoD TCP and IP protocols

3.1 OVERVIEW

The Overview section provides an introduction to the specification document.
As a prose summary of the protocol specification, the overview is intended to
convey a general understanding of the protocol and its operation. The
overview is, however, not intended to provide a detailed definition of the
protocol and should be kept brief. In order to keep this section short,
concepts may be presented in a simplified form, even though further exceptions
to these concepts or exceptions to a generalized rule are identified in the
detailed protocol specification.

The introduction should include an architectural context for the protocol to
be specified and should !. ,nlight the important aspects of the protocol
services provided. Additionally, key mechanisms employed to provide these
services may be introduced. The architectural context portion of the Overview
defines the correspondence between the general services provided by the
protocol layer to which this protocol belongs (as defined in the protocol
system architecture document), and the services for the protocol to be
specified. In defining this architectural contexct, appropriate sections of
the system protocol architecture document should be referenced. A general
model of operation for the protocol should be provided to present the
highlights of the important protocol services and mechanisms. This model
should describe the relationship of the protocol to interfacing protocols and
include high level scenarios illustrating the operation of the protocol within
the overall system framework. The overview should also include references to
documents describing previous work utilized in the protocol design and to

System Development Corporation29 March 1982 -9- TM-7172/301/00

reports providing additional material on design issues addressed by the

protocol.

3.2 SERVICES PROVIDED TO THE UPPER LAYER

The purpose of this section is to provide an informal description of the
services which the protocol will provide to upper layer protocols. These
services help to provide a set of functional requirements for the pr~otocol
mechanisms, define the services which users of the protocol (i.e., N+1
protocol entities) can expect, and describe general performance goals and
performance trade off guidance. As shown in Figure 2, the services provided to
users

LAYER N+1 LAYER N,1

ENTITY ENTITY

- -- - - - - - - - - -

V V
--------------------------------(<--- SERVICES PROVIDED TO UPPER

I i LAYER OR LAYER N SERVICES

iV V

LAYER N LAYER N
ENTITY ENTITY

I V
-- I

COMPOSITE SERVICE OF
ALL LOWER LAYERS

I---

Figure 2. Services Provided by Layer N Protocol

represent the aggregate of the layer N and all lower layer protocols, without
any explicit reference to the mechanisms used Lo provide these services. For
example, a service provided by the Internet Protocol sight be insulation from
packet size restrictions of intervening subnetworks. The mechanisms used to
provide this service, fragmentation and reassembly, would not appear in the
service specification.

System Development Corporation
29 March 1982 -10- TM-7172/301/00

In general, this section describes services in terms of the value added by the
protocol. That is, the services identified are either not provided by the
lower layer protocols, i.e. layer N-1 and below, or are needed to compensate
for problems introduced by the lower layers. For example, a reliable
transport protocol specification might list reordering of data and duplicate
detection as services, thereby emphasizing that the lower levels may introduce
duplicates. In the Internet Protocol example above, the insulation from
packet size restriction service underscores the fact that lower layer
protocols may have packet size limitations.

Identification of performance criteria within the service specification is
consistent with delineation of the value added by the protocol. This
criterion is based upon information concerning user traffic characteristics or
usage requirements. Such information should be identified whenever possible
since it may motivate major protocol entity design decisions. In the case of
a transport protocol, for example, traffic may be known to be bursty, or
connections may be known to have long lifetimes; users may consider
reliability paramount or may require minimum delay. If anything is known
about the traffic characteristics of the environment in which the protocol
will operate, this information should be included in the description of the
services. Based upon this information, performance trade-off guidance can be
formulated. For a transport protocol, such guidance might state that high
reliability or low delay is the overriding consideration in the performance of
the protocol. For a file transfer protocol, performance trade-off guidance
might specify whether the protocol is to be optimized for large or small
files.

3.3 UPPER LAYER SERVICE/INTERFACE SPECIFICATIONS

The purpose of the Upper Layer Service/Interface specification is to formally
define the services provided to the users of the protocol (i.e., the layer N+1
entities). These services are realized via interactions between the users of
the protocol and the protocol. Hence services are specified in terms of the
interface(s) through which the services a-e accessed. The services are
defined as an abstract machine which defines responses by the layer N protocol
to scrvice requests by the users of the layer N protocol. These responses and
requests are termed "interaction primitives". Interaction primitives are
grouped into two classes: service request primitives -and service response
primitives. Service request primitives refer to interactions initiated by
users of the protocol. Service response primitives refer to interactions
initiated by the protocol itself and may be the result of events occurring at
lower layers.

An interaction primitive defines the content of information units exchanged
between protocol layers. Peer exchanges between protocol entities require
interoperation of disjoint implementations, but interfaces are generally a
localized concern. Hence while the information exchanged between layers must
be specified, it is undesirable to specify the exact formats for these
exchanges.

The extended state machine model for services provided to upper layer users
defines the behavior of the entire "service machine" from the perspective of

if System Development Corporation
29 March 1982 -1-TM-7172/301/00

the upper layer protocols or users of the protocol. Since the services
represent the global properties of the composition of the layer N protocol and
the lower layer protocols, it is impossible to provide a deterministic
specification of the services. The p-1rential for failure of a protocol entity
(i.e., the processor(s) on which tne entity is implemented) or for a
partitioning of the communications medium, for example, must be taken into
account. Thus a reliable transport protocol cannot have the property that all
data sent was delivered. Instead, the service provided by the transport
protocol might be to deliver data to the destination user or to inform the
source user that delivery was not confirmed or both. The abstract machine
specification of the interface must therefore provide for such nondeterminism.

Interface specifications must also define allowed sequences of interactions.
In a connection-oriented transport protocol, for example, the action taken
upon commands to open and close connections are probably sequence dependent.
Section 4 of this document describes an extended state machine specification
technique which provides for both non-deterministic and sequence dependent
actions.

The Upper Layer Service/Interface Specification section is divided into two
major subsections. The first subsection defines the interaction primitives
and the second subsection defines the interface machine. Section 5 of this
document describes the format requirements for these subsections.

Sequencing requirements for upper layer protocols or users may be implied by
the abstract service machine. Events may be acceptable only within certain
states as defined by the state vector. This restriction on acceptability of
events forces events to be properly sequenced with respect to the abstract
service machine.

3.4 SERVICES REQUIRED FROM THE LOWER LAYER

The purpose of this section is to provide a general description of the
services which this protocol requires from lower layer protocols. This
section is analogous in form to the Services Provided to the Upper Layer
section. As shown in Figure 3, the lower layer service requirements are
provided by the composite of all the protocol layers below the protocol to be
specified. The lower layer service requirements for a protocol should be
equivalent to, or a subset of, the service specification for the layer
directly below. Just as the Upper Layer Service section should focus on the
value added by the protocol, this section should focus on the characteristics
of the lower layers which must either be compensated for or are relied upon.
In a reliable transport protocol specification, for example, this section
might indicate that messages may be lost, reordered, or duplicated by the
lower layers.

3.5 LOWER LAYER SERVICE/INTERFACE SPECIFICATION

This section specifies the services required from lower layer protocols in a
more formal manner than the description of lower layer service requirements.
In addition, it defines the interface through which these lower layer services
are accessed. This section is analogous to the upper layer service/interface

System Development Corporation

29 March 1982 -12- TM-7172/301/00

LAYER N0- LAYER N,1
ENTITY ENTITY

V V

V V

LAYER N LAYER N
ENTITY IENTITY

V V

- - - - - - - - - - - - - - - - - - -
I COMPOSITE SERVICE OF 1----SERVICES REQUIRED

I ALL LOWER LAYERS iFROM LOWER LAYER

Figure 3. Services Required by Layer N Protocol

specification and thus is divided into two major subsections. The first
subsection defines the interaction primitives and interface parameters for the
interface between the protocol mechanism and the lower layer protocol; and the
second section defines the abstract machine model for the services required
from the lower layers. The format for the lower layer service/ interface
specification is the same as the format used in describing the upper layer
service/interface specification and is described in Section 5 of this
document.

3.6 PROTOCOL ENTITY SPECIFICATION

This section defines the internal operation of an instance of the protocol.
It is divided into three major subsections. The first subsection is the
protocol entity overview. The purpose of this section is to provide a prose
overview of the mechanisms used in the protocol, provide an informal mapping
into the services as defined in the service specification, and provide a place
for documentation of the intent of the protocol designers. The second major
subsection defines message formats. These are the formats for peer protocol
entity exchanges. The messages exchanged between peer entities must be
defined precisely in order to allow independent entities built by different

System Development Corporation
29 March 1982 -13- TM-7172/301/00

implementors to interoperate. The third subsection defines the extended state
machine model for the protocol entity and hence its precise operation.

The Protocol Entity Specification defines the requirements for implementation
of the protocol. The entity is defined utilizing the extended state machine
specification technique described in Section 4 of this document. The events
for the protocol entity may be interaction primitives from the layer above or
below, or signals from the execution environment. Actions in the entity state
machine specification may change internal protocol mechanism data structures,
generate interactions to adjacent protocol layers via execution environment
requests, or request a service of the execution environment (e.g. setting a
timer). Implementation dependent actions are difined in separate "action
procedures" which may present various implementation approaches and policies.
Any services which must be provided by the execution environment must appear
in the execution environment requirements section.

3.7 EXECUTION ENVIRONMENT REQUIREMENTS

This part of a specification document defines the minimum set of execution
environment services required by the protocol for proper operation. These
requirements are not intended to impose a particular operating system on
protocol implementations, but are instead intended to indicate the basic
services that the operating system must provide in order to support the
protocol. The execution environment requirements are derived from the
protocol mechanism specification where they appear as generalized "system
calls". The execution environment requirements section provides a complete
list of these "system calls" as well as a brief description of the services
that they are to provide. Examples of services which might be required are
timers and interprocess communication mechanisms.

System Development CorporationI29 March 1982 -14- TM-7172/301/00

4. EXTENDED STATE MACHINE MODELLING TECHNIQUE

Finite state machines have been used quite successfully in specifying and
modelling of simple protocolsr4, 61. When applied to more sophisticated and
complex protocols, however, the finite state machine approach has been plagued
with the "state explosion" problemf 3, 14l. This refers to the phenomenon in
which the state and event spaces become too large to be easily managed. For
example, the introduction of sequence numbers as a protocol mechanism for
marking data results in a different state for each possible sequence number
value expected. In addition the sequence numbering of incoming data results
in an event space large enough to accommodate all possible sequence numbers on
incoming data.

In order to mitigate this state explosion problem, various techniques have
been used. These techniques generally involve a multidimensional state space,
commonly referred to as the introduction of state variablesF3, 14, 15]. In
order to handle the large number of states and events a method must be used to
group classes of states and events together rather than listing, for every
state in a large state space, every possible event which can occur. Such a
method allows the state machine to be organized in a more understandable way
and hence improves analyzability.

The extended state machine modelling technique defined in these guidelines
introduces several extensions to a pure finite state machine model. These
extensions include the specification of a state vector rather than an
enumeration of all possible states and the categorization of events into event
classes (this is analogous to the state vector and is referred to as the event
vector). An additional method intended to help in the analysis of large state
machines is the introduction of a hierarchy of state machinesE 12]. This
approach allows the encapsulation of separable portions of the original state
machine into modularized subordinate state machines which are invoked from the
top level state machine. The technique is particularly useful for
partitioning protocol functionality into phases of operation, where each phase
of the operation may be represented by a completely separate, subordinate
state machine. A transport protocol, for example, may be broken into a
connection establishment phase, a connection maintenance phase, and a
connection termination phase with separate subordinate state machines for each
phase. This technique can greatly simplify the analysis of a protocol by
organizing the state machine into more manageable pieces.

4.1 BASIC TECHNIQUE FOR EXTENDED STATE MACHINE SPECIFICATIONS

The representation of extended state machines is similar for both
service/ interface and mechanism specifications. As a result of their non-
deterministic nature, service/interface specifications require some extensions
and changes to the basic format. These differences are defined in
Section 4.3. Other than those differences, the basic technique defined in
this section applies to both types of specifications. The format requirements
for the state machine specifications are described in Section 5 of this
document.

System Development Corporation

29 March 1982 -15- TM-7172/301/00

Extended state machine specifications consist of six components: 1) Machine
Instantiation Identifier, 2) State Diagram, 3) State Vector, 4') Data
Structures, 5) Event List, and 6) Events and Actions. Each of these items is
briefly discussed in the subparagraphs which follow.

4.1.1 Machine Instantiation Identifier

The machine instantiation identifier defines the information necessary to bind
a particular event to a particular state machine instance. This information
is included in the interface parameters which accompany all incoming events.
For example, in the case of the Internet Protocol one state machine instance
exists for each datagram. A datagram is identified by source and destination
address, and the protocol and ID fields. These identifiers therefore specify
a particular instance of an I? state machine. For a protocol which is
connection oriented, like TCP, one machine instance could exist for each
connection, and the machine instantiation identifier would be equivalent 'to
the set of information necessary to uniquely name a connection.

For some protocols, the information used to bind incoming events to a
particular state machine instance may be different for certain states or
groups of states. In the case of TCP, for example, a connection (or State
Machine Instance) is usually named by a "Socket Pair', but at certain times in
a connection lifetime the connection may be named by only one socket
("Unspecified Passive Open"), or by a shorthand name (the "Local Connection
Name"). In order to allow for these state machine instance "pseudonyms",
multiple versions of the state machine instantiation identifier may be
specified for an extended state machine. If more than one machine
instatiation identifier is specified, each one must be accompanied by the
following:

1. A list of -all states (or state classes) for which the identifier is
valid.

2. A list of all interaction primitives which may use the identifier.

It should be noted that incoming events which name a state machine by
pseudonym are considered to be illegal if they cannot be bound to a state
machine instance in an appropriate state to be named by that pseudonym.

4.1.2 State Diagram

State diagrams provide a pictorial summary of the protocol state machine.
State diagrams are included only as an aid to the reader. The state diagram
depicts all of the major states and the possible transitions between them.
Although state diagrams should be included wherever appropriate to improve the
understandability of the full state machine description, the full description
of the protocol state machine takes precedence in defining protocol operation.

4.1.3 State Vector

The state vector defines, as a set of variables, all information which is to
be retained across more than one event. In general, a state vector consists

System Development Corporation

29 March 1982 -16- TM-7172/301/00

of one "main scalar element", which is commonly referred to as the "state",
and a set of additional "state variables". For a transport protocol a state
vector might consist of a "main scalar variable" like:

State Name = (OPEN, CLOSED, CLOSEPENDING . ..

and "state variables" like:

Send-sequence-number = INTEGER range256

An initial value for each vector element must be provided in order to define
the initial state of the abstract machine.

4.1.4 Data Structures

Naturally, all data structures used within the state machine specification
must be defined. These data structures are the state vector information, and
information to be retained which has been received across an interface, or is
to be sent across an interface. The format for the data structures is Ada
syntaxf ii]. Data items may be untyped if the typing imposes unnecessary
implementation restrictions. In general, data types should be limited to
those found in other programming languages such as Pascal. All data items
should be accompanied by a comment in Ada format. The Ada format for comments
is "--" followed by the comment text. Example:

Sequence-number : INTEGER -- Next Sequence Number Expected

In addition to the predefined Ada types, the data types "queue" and "stack"
may also be used for representing more sophisticated data structures, without
creating unnecessary implementation restrictions.

4.1.5 Event List

This section contains a list of all of the "events" which may occur relative
to the extended state machine. These "events"~ are actually groups or classes
of events which will be refined further in the state machine actions defined
in the events and actions section of the specification. While any event from
the event list may occur in any state, events which result in no action within
a particular state are not listed.

In general an event class will be defined by the primitive name in the
interaction primitive, and the further refinement of the event will be based
on the values of the -additional associated parameters such as address and
length. For example a "SEND" service request from a layer N+1 protocol entity
could be considered an "event" for the layer N protocol, and be further
refined by examination of the parameters associated with the "SEND"
interaction primitive.

System Development CorporationI29 March 1982 -17- TM-7172/301/00

4.1.6 Events and Actions

This section defines the actions to be taken upon receipt of "events". These
actions are dependent upon the event, and the state of the protocol at the
time that the event occurs.

4.1.6.1 State/Event Correspondence

For every state, it is necessary to define the actions to be taken in response
to any acceptable event. For a very simple state machine this could be done
by simply Uating every state, and for each state listing all possible events
and associated actions which could occur while in that state, as illustrated
in Figure 4. For more complicated state machines, however, this simple
listing would become extremely large. In order to help keep the events and
actions somewhat more manageable the correspondence between states and events
is refined gradually by grouping classes of states and events together. State
classes are groups of states defined by a value for one element of the state
vector, usually the "main scalar element". Event classes are groups of events
usually defined by a primitive name. The event class is made up of a set of
events which have the specified primitive name and whose associated parameters
fall within the defined range. These state and event classes are further
refined by the use of enabling predicates, or logical statL-ments. The
technique for handling the events and actions for extended state machines is
shown in Figure 5. A specific example of this "grouping" technique is
illustrated in Figures 6 and 7. Figure 6 shows an ungrouped event list for
the CONNECTIONOPEN state. In Figure 7 the events have been grouped into
event classes. Further refinement of the event classes into atomic events is
done in the ''actions" section for the event class.

4.1.6.2 Actions

The "Actions" for these state and event classes may further refine the
state/event correspondence, change internal data structures (e.g. the state
vector), or generate interactions to interfacing entities. The syntax for
specifying actions is drawn from several Ada constructs, and an optional table
representation.

Briefly, state/event correspondence is accomplished through the use of Ada
"IF" and " CASE" statements. Changes to internal data structures are
represented by Ada assignment statements. Generation of interactions to
interfacing entities is accomplished by the invocation of an execution
environment service request. All such request requirements must be defined in
the execution environment section of the protocol specification.

System Development Corporation
29 March 1982 -18- TM4-7172/301/00

4--

State 1:

Event 1: Actions for Event 1
Event 2: Action~s for Event 2
Event 3: Actions for Event 3

Event N: Actions for Event N

State 2:

Event 1: Actions for Event I
Event 2: Actions for Event 2
Event 3: Actions for Event 3

Event N: Actions for Event N

State K:

Event 1: Actions for Event 1
Event 2: Actions for Event 2
Event 3: Actions for Event 3

Event N: Actions for Event N

+--

Note: States and Events are individually enumerated with no grouping.

Figure 4. Events and Actions for a Simple State Machine

System Development Corporation
279 March 1982 -1-TM77/31O

I State Class 1
Event Class 1

Actions:
Event Class 2

Actions:

Event Class N
Actions:

I State Class 2
Event Class 1

Actions:
Event Class 2

Actions:
Event Class 3

Actions:

Event Class M
Actions:

State Class K
Event Class 1

Actions:

Event Class J

+--

Events and Actions are arouped by State Class. Any
Event Class not explicitly listed for a particular
State or State Class is assumed to result in no
action. Actions may further refine the state/event
correspondence by the use of enabling predicates.

Figure 5. Events and Actions for an Extended State Machine

System Development Corporation
29 March 1982 -20- TM-7172/301/00

+--+

State = CONNECTION OPEN

Events Actions

open cmd discard
close cmd close connection
data, seq = 0 deliver
data, seq = 1 deliver

data, seq = 7 deliver
data, seq = 8 discard
data, seq = 9 discard

data, seq = 127 discard

4---.

Figure 6. Events Listed Without Grouping

4.--

State = CONNECTION OPEN

Event Classes Actions

opencmd discard
close cmd close connection
data if seq < 7 deliver

else discard

Figure 7. Events Listed in Classes

System Development Corporation

29 March 1982 -21- TM-7172/301/00

4.1.6.3 Table vs. Pseudo-Code Representation of Actions

The basic state machine approach described above combines two distinct types
of "event processing" under the heading of actions. The first type is the
decision functions necessary to refine the state/event correspondence based
upon the state vector and event parameters. The second type of event
processing is the modification of state variables (i.e., the state transition)
and the generation of externally visible items (i.e., interactions with
interfacing entities). This second type of event processing could be defined
using a program-like or pseudo-code format with action procedures defined
separately in a manner similar to program subroutines.

Unfortunately, such monolithic specifications of event processing can become
quite large and difficult to analyze. As a result, the events and actions
section of the extended state machine may be organized into a table format for
the refinement of state/event correspondence. In these decision tables, much
of the refinement is separated from the actions.

This -approach can help organize large numbers of possible combinations of
conditions into a more manageable form. Thus it provides a framework for
systematically checking such qualities as consistency (whether two or nore
sets of conditions can be satisfied simultaneously yet imply different
actions), completeness (whether every possible legitimate combination of
conditions has been covered), and redundancy (whether a set of conditions
implying a set of actions is given more than once). This framework not only
aids in the development and specification of more correct and complete
protocol mechanisms, but also provides -a sequence-independent definition of
condition checks which may be directly restructured to achieve implementation
goals. Decision tables can be kept compact through the use of "don't care"
entries to represent decision outcomes that do not affect the action procedure
selected. In addition, the sharing of commonly used refinement functions and
action procedures among tables reduces the amount of detailed pseudo-code
needed. If refinement of the state/event correspondence is not necessary for
a particular event class, a null table may be used.

The columns of the table represent decision functions and their outcomes. The
rows represent combinations of decision function outcomes. At the right side
of the table are names of action procedures to be invoked for the set of
conditions represented by the row. The decision functions and procedures
follow the tables. Examples of such tables, decision functions, and action
procedures appear in Sections 6. 3. 6.1, 6.3. 6.2, and 6.3. 6.3 of the IPFl1l.
Decision functions may contain If and Case statements. Procedures may contain
If, Case, and Assignment statements, as well as execution environment service
requests (generalized system calls).

4.1.6.4 Implementation Dependent Actions

In some cases the actions to be taken in response to a particular event may
vary depending on the specific implementation approach. TCP retransmission
policy options are an example of this phenomenon. Naturally, any of the
possible actions could be taken without impacting the correct operation of the

System Development Corporation
29 March 1982 -22- TM-7172/301/00

protocol. Thus from a pure specification perspective, further definition is
unnecessary. From an implementation perspective, however, the choice of
policy may dramatically impact the protocol's efficiency. Therefore, these
implementation dependent actions should be separated into special action
procedures which discuss possible implementation strategies and provide
trade-off guidance including discussion of the performance impact of various
implementation approaches.

4.2 SUBORDINATE STATE MACHINES

Despite the use of state vectors and event vectors, the number of identified
states may still become quite large. In order to enhance the analyzability of
the state machine, the extended state machine model may be partitioned into a
hierarchy of machines. In such a hierarchy, sequences of events and actions
may be grouped together and specified in a separate subordinate state machine.
This hierarchical representation technique provides for the logical
partitioning of a state machine into more manageable pieces. Naturally, the
hierarchical representation can be mapped into a non-hierarchical equivalent.
An example of hierarchical and non-hierarchical representations for the same
state machine is depicted in Figure 8.

The logical grouping or encapsulation of event sequences can be used to
simplify the analysis of the state machine. In analyzing the main state
machine, the encapsulated set of event sequences may be viewed as a single
state transition, thus reducing the complexity of the main machine.
Subordinate machines are specified as independent entities and thus may be
analyzed separately. In addition, subordinate machines may be invoked from
several places within a main machine and can therefore be used to "factor out"
common elements of the state machine in order to limit duplication.

A possible application for this hierarchical modularization is separation of
protocol "phases of operation" into separate subordinate machines. In the
case of a connection-oriented transport protocol, for example, it night be
desirable to separate connection establishment and connection termination
sequences into separate subordinate state machines. In this way it is easier
to separate the various sequences of events and actions which result in
connection establishment from both connection maintenance and termination
issues. Furthermore, the same sequence (i.e., the same subordinate state
machine) may terminate the connection from multiple states.

System Development CorporationI29 March 1982 -23- TM-7172/301/00

4.2.1 Invocation of Subordinate Machines

Subordinate state machines may be invoked by the use of' the "INVOKE" keyword
in the "Actions" section of an extended state machine specification. The
syntax is:

INVOKE Name (State Vector Elements, Data Structures)

Where:

INVOKE - Keyword, in all capitals, signifies invocation of the named
subordinate machine.

Name - Name of subordinate machine to Le invoked.

State Vector Elements - State vector :-iements of calling machine which
the subordinate machine will have read/write access to. The
subordinate machine may NOT access the "main scalar element" of the
state vector for the main machine.

Data Structures -Data structures which the subordinate machine will have
read/write access to.

System Development Corporation
29 March 1982 -24- TM-7172/301/00

NON-HIERARCHICAL STATE MACHINE HIERARCHICAL EQUIVALENT

-------------- 4+------------------- -----------------------------------

Complete Machine Machine: MAIN
-- ---------------------------------

I I I I

1 I ii

V

INVOKE ALPHA
CASE OF OUTCOME:

V OUTCOME=X OUTCOME=Y

.I I
-- 2 - - -

I II

V V
I I I I I

I

Subordinate Machine: ALPHA
I ..I I ..
I I

V V V V

I 3 II
4 I

v v

D Machie: > PE A
I --------------- ---- ---- ---------------------------------------

i S i

I I

IV V I

-- -- -- --I I 7' 'IOTOE XIIOTOE=

---- --_

I II IIIII I

i i i l l " i

System Development Corporation
29 March 1982 -25- TM-7172,/301/OO

Immediately following the "INVOKE" statement is a "CASE OF OUTCOME" statement
followed by a set of possible outcomes which may be returned by the
subordinate machine. The actions to be taken by the calling machine for each
outcome are specified directly following each possible outcome listed. The
syntax for invocation of a subordinate machine is shown in Figure 9. Since
the subordinate machine is actually part of the state machine, the calling
machine can be thought of as disabled until an outcome is returned by the
subordinate machine. Furthermore, the event list for the main machine serves
as the event list for all subordinate machines invoked by that "main machine"

Invoke Name (State Vector Elements, Data Structures)

Case of Outcome:

Outcome 1 : Actions for Outcome I

Outcome 2 :Actions for Outcome 2

I Outcome N : Actions for Outcome N

--

Note: The Invoke statement is q-,alogous to a subroutine
call. The Case of Outcome statement processes i6he
returned value (i.e., the outcome).

Figure 9. Reference to Subordinate State Machine in Main State Machine

The same subordinate machine may be invoked in more than one place within a
".main machine".- Invocation of a subordinate machine should directly precede
the setting of the "main scalar element" of the state vector. This main
scalar element may be changed orly once in processing a particular event, and
setting it must be the last action listed.

The use of hierarchical machines is not limited to two levels. Invocation and
specification of further levels of subordinate machines may be done using the
same syntax and semantics as are used for the two level hierarchy.

Sys~sm Development CorporationI29 March 1982 -26- TM-7172/301/00

4.2.2 Specific~iti'n or Subordinate Machines

The specifications for subordinate machines are basically the same as for
"main" machines. The following additional information is to be included:

1. State Vector
The relationship between this subordinate machine's state vector and
the "main" state vector must be specified including elements which
are accessed from the "main" state vector. Initial values must be
specified for all internal state vector elements thus defining the
'initial state" for the subordinate machine.

2. Data Structures
External data structures accessed must be referenced in the "data
structures" section.

3. Additional Actions
The additional action "FINAL OUTCOME = outcome" is used to return a
final outcome to the calling machine.

4.3 EXTENSIONS FOR SERVICE/INTERFACE SPECIFICATION

In order to apply the extended state machine technique to the specification of
protocol services, the technique must be eahanced with two minor extensions.
The technique must first be extended to provide for the specification of non-
deterministic actions inh 'erent in protocol services. In addition, the ability
to partition state vectors into logically s-eparate parts is useful for
modelling of the "delay" aspects of the protocol service. These extensions
are further discussed in the sub-sections which follow.

It should also be noted that service/ interface specifications do not have
"1event processing" in the same sense as protocol entity specifications. The
actions are creation of response primitives with particular values for each of
the identified parameters (see Section 3 or 5 of the IPFI]). Both the table
format for decision functions and subordinate state machines may still prove
useful, however, in simplifying service/ interface specifications, since more
complex, higher level protocols may require delineation of numerous command
(i.e. service primitive) sequences.

4.3.1 Non-Deterministic Actions

Section 3.3 of this document identified the need for non-determinism in the
specification of protocol services. The state machine which defines the
actions of the layer N protocol entity can be deterministic since it is not
directly affected by the actions of entities at other protocol layers, but
instead deals with the local interaction involving the entities at the layers
above and below. In the case of the layer N upper layer service machine,
however, the composite actions of all lower layer entities affect the behavior
of the machine. Since the lower layer behavior characteristics may be non-
deterministic (e.g. data may be lost or corrupted), the state machine for the
services may be non-deterministic. This distinction between the state machine

System Development Corporation
29 March 1982 -27- TM-7172/301/00

for the protocol entity and the state machine for protocol services with
respect to non-determinism is depicted in Figure 10.

As a result of the non-deterministic nature of protocol services, an
additional construct for the specifica-tion of non-deterministic actions is
provided in the extended state machine model. Instead of a single set of
actions being shown in re sponse to a single event, several such action sets
may be specified separated by the keyword OR.

4.3.2 Partitioned State Vectors

:n orier -o apecify services which involve delay, it may be advantageous to
p~zttion the state vector into several logically separate parts. An example

a trotocol service which lends itself to this approach is the data transfer
cnzis f a -rsnsport protocol connection. The transfer of data between sender

7 . . .s non-instantaneous, and subject to non-uniform delay. By
-' *. -- st.ate vector into a sender portion and a receiver portion and

" q- haracteristics of the communication between the two state
-, .: - ,'r~u .attn ielay may be easily included in the service

-Iii, ",3pli state vector" specification allows delay to be
"- . basiz iata transfer mechanism since the transfer

ierenden.Ky cf - elay.

..... . ..- -" - - rs may be specified by defining each state
- ...- . , :.- -"ss uLes for eqch part, and defining the
. - ,.. -*h art.. v. tate ;ector segments are defined in the

:, i, - . - :" 13 7-. I)mmun> vion may be defined to occur at
-. i. i- afini n . t by a probability density, or at random
-17' . .- ,. n , , :- - ,)e f partitioned state vectors may be

,-: ":1- .:- '- " ae a -rinsfer service for TCPF2].

System Development Corporation
29 'Aarch 1982 -28- TM-7172/301/OO

PROTOCOL ENTITY MACHINE SERVICE 14ACHINE
(DETERMINISTIC) (NON-DETERMINISTIC)

SITE A SITE B

LAYER N+1
ENTITY -

-LAYER N-I , ,LAvER N 1
ENTITY ENTITY

I I

I . I
V

II I I
-- ------------------------

LAYER N SERVICE
LAYER N -- ----------------
ENTITY

V V

-LAYER S, LAYER ,
ENTITY! ENTITY!

I .

II *

V V V

LAYER N-i * COMPOSITE SERVICE
ENTITY OF ALL LOWER LAYERS

* NOTE: Reliance on the composite service provided by all lower

protocol layers results in possible non-determinism in the
layer N service state machine.

Figure 10. Motivation for Non-Deterministic Extension for
Specification of Protocol Service State Machines

d ii

System Development CorporationI29 March 1982 -29- TM-7172/301/00

5. PROTOCOL SPECIFICATION FORMAT

The paragraphs which follow describe the format to be used for each section of
a protocol specification. This description is divided into three major
portions. First, the format for a protocol specification is presented,
omitting the details of the extended state -machine portions. The format for
extended state machines is presented next, including descriptions of the
formats for both simple (non-hierarchical) and hierarchical state machines.
The third section defines a set of required correspondences between the
various sections of a protocol specification. These correspondence
requirements are provided to help insure that protocol specifications are
internally consistent.

5.1 BASIC STRUCTURE

The overall structure for a protocol specification is shown in Figure 11:
"Generic Table of Contents for Protocol Specifications". The subsections
which follow parallel the table of contents and describe the format for each
section. The format guidelines presented below recommend additional
stricture, beyond what is shown in Figure 11. This additional struicture is
not required for conformance with these guidelines, but should be followed if
possible.

5.1.1 Overview

The format for the "Overview" is English prose. The "Overview" may optionally
be broken into -three subsections: "Architectural Context", "Highlights of
Services and Mechanisms" and "Scenarios".

5.1.2 Services Provid~ed to Upper Layer

The format for this informal description of the services provided to the upper
layer is English prose. In general, it is recommended that each service be
presented in a separate subsection, which should describe the service to be
provided and discuss any performuance criteria associated with that service.

5.1.3 Upper Layer Service/Interface Specification

As shown in Figure 11, the "Upper Layer Service/Interface" section is divided
into two major ilhentions: "Interaction Primitives" and "Extended State
Machine". The formats for these subsections are presented in the
subparagraphs which follow.

System Development Corporation
29 March 1982 -30- TM-7172/301/00

+------..-----------......-- --_------- ------ -----------

1. OVERVIEW

2. SERVICES PROVIDED TO UPPER LAYER

3. UPPER LAYER SERVICE/INTERFACE SPECIFICATIONS

3.1 INTERACTION PRIMITIVES
3.1.1 Service Request Primitives
3.1.2 Service Response Primitives

3.2 EXTENDED STATE MACHINE SPECIFICATION OF SERVICES

PROVIDED TO UPPER LAYER

4. SERVICES REQUIRED FROM LOWER LAYER

5. LOWER LAYER SERVICE/INTERFACE SPECIFICATIONS

5.1 INTERACTION PRIMITIVES
5.1.1 Service Request Primitives
5.1.2 Service Response Primitives

5.2 EXTENDED STATE MACHINE SPECIFICATION OF SERVICES
REQUIRED FROM LOWER LAYER

6. PROTOCOL ENTITY SPECIFICATION

6.1 OVERVIEW OF PROTOCOL MECHANISMS

6.2 MESSAGE FORMATS FOR PEER EXCHANGES

6.3 EXTENDED STATE MACHINE REPRESENTATION OF PROTOCOL ENTITY

7. EXECUTION ENVIRONMENT REQUIREMENTS

8. GLOSSARY

9. BIBLIOGRAPHY
iue-eeicTbe-nens-rtc pciain------------------------------------- +

Figure 11. Generic Table of Contents for Protocol Specifications

System Development Corporation
29 March 1982 -31- T14-7172/301/00

5.1.3.1 Interaction Primitives

The interaction primitives define the content of the messages exchanged
between the upper layer and the protocol entity. As shown in Figure 11, these
primitive name definitions are further divided into "Service Request
Primitives" and "Service Response Primitives". The format for both service
requests and responses is a list of primitive names and parameters, with one
subsection for each primitive name and the parameters associated with it.
Comments should be included to explain the purpose of each primitive name and
each associated parameter.

The following outline depicts the has -. " 'i. n on of the
interaction primitives:

3.1 INTERACTION PR.M':T'E:

3.1.1 Service 9equsi - .-

?.. . Wr i m1.. ".,om.-

*LT 1. t. I - a

7.11.1P~ meir9 lame I--:*'--i

?arame7ers Asso ," d: ?rt,7 ve Name N

3.1.2 Service Response Primties

3.1.2.1 Primitive Name *
Parameters Associated With Primitive Name I

3.1.2.2 Primitive Name 2
Parameters Associated With Primitive Name 2

3.1.2.N Primitive Name N
Parameters Associated With Primitive Name N

Section 3.1 of the IP specification F11 contains an example "Interaction
Primitives" section.

5.1.3.2 Extended State Machine Specification of Services Provided to Upper

Layer

The extended state machine for the services provided to the upper layer may be
specified either as a simple (non-hierarchical) or hierarchical extended state

System Development Corporation
29 March 1982 -32- TM-71 72/301/00

machine. The formats for both types of extended state machine specific!ation

are defined in Section 5.2 of this document.

5.1.4 Services Required From Lower Layer

The format for this informal description of the services required from the
lower layer is English prose. In general, it is recommended that each service
be presented in a separate subsection, which should describe a service
requirement and discuss any performance criteria associated with that service.
In describing these service requirements emphasis should be placed on
discussing the limitations of these service requirements with respect to the
value added by the layer N protocol.

5.1.5 Lower Layer Service/Interface Specification

As shown in Figure I1I, the "Lower Layer Service/Interf ace" section is divided
into two major subsections: "Interaction Primitives" and "Extended State
M'achine". The formats for these subsections are presented in the
subparagraphs which follow.

5.1.5.1 Interaction Primitives

The interaction primitives define the content of the messages exchanged
between the lower layer and the protocol entity. As shown in Figure 11, these
primitive name definitions are further divided into "Service Request
Primitives" and "Service Response Primitives". The format; for both service
requests and responses is a list of primitive names and parameters, with one
subsection for each primitive name and the parameters associated with it.
Comments should be included to explain the purpose of each primitive name and
each associated parameter.

System Development Corporation
29 March 1982 -33- TM-7172/301/00

The following outline iepicts the basic format for the specification of the
interaction primitives:

5.1 INTERACTION PRIMITIVES

5.1.1 Service Request Primitives

5.1.1.1 Primitive Name I
Parameters A3sociated With Primitive Type 1

5.1.1.2 Primitive Name 2
Parameters Associated With Primitive Name 2

5.1.1.N Primitive Name N

Parameters Associated With Primitive Name N

5.1.2 Service Response Primitives

5.1.2.1 Primitive Name 1
Parameters Associated With Primitive Name 1

5.1.2.2 Primitive lame 2
Parameters Associated With Primitive Name 2

5.1.2.N Primitive Name N
Parameters Associated With Primitive Name N

Section 5.1 of the IP specification FI] contains an example "Interaction
Primitives" section for a "Lower Layer Service/Interface Specification".

5.1.5.2 Extended State Machine Specification of Services Required from Lower
Layer

The extended state machine for the services required from the lower layer may
be specified as either a simple (non-hierarchical) or hierarchical extended
state machine. The formats for both types of extended state machine
specification are defined in Section 5.2 of this document.

5.1.6 Protocol Entity Specification

As shown in Figure 11, the "Protocol Entity Specification" is divided into
three subsections: "Overview of Protocol Mechanisms", "Message Formats for
Peer Exchanges", and "Extended 3tate Machine Representation of Protocol
Entity". The formats for each of these subsections are defined in the
subparagraphs which follow.

Li

System Development Corporation
29 March 1982 -34- TM-7172/301/00

5.1.6.1 Overview of Protocol Mechanisms

The format for this "Overview" is English prose. Each mechanism should be
presented informally in a separate subsection, with emphasis on the
correspondence between the mechanism and the service requirements which
motivate it.

5.1.6.2 Message Formats for Peer Exchanges

The specification of the message formats for exchanges with peer protocol
entities consists of:

1. A diagram of the format or formats for peer exchanges.

2. Descriptions of each header field.

Each field should be described in a separate subsection.
Field descriptions should include the following items:

a. Field Name
b. Abbreviation (if any)
c. Field Length
d. Units (if appropriate)
e. Default Value (if any)
f. A comment explaining the purpose of the field.

5.1.6.3 Extended State Machine Representation of the Protocol Enit

The extended state machine for the protocol entity may be specified as either
a simple (non-hierarchical) or hierarchical extended state machine. The
formats for both types of extended state machine specification are defined in
Section 5.2 of this document.

5.1.7 Execution Environment Requirements

The execution environment requirements are specified as a set of system calls
with descriptions of the service requirements for each call. 7,ach call should
be described in a separate subsection. These system call names are derived
from the calls used for requesting these services in the protocol entity
specification (Section 6 of the protocol specification).

5.1.8 Glossary

The glossary consists of a set of terms in alphabetical order with their
definitions.

5. 1.9 Bibliography

The bibliography should be produced in conformance with some generally
accepted bibliographic format.

System Development Corporation
29 March 1982 -35- TM-7172/301/00

5.2 EXTENDED STATE MACHINE FORMATS

Extended state machines may be either simple (non-hierarchical) or
hierarchical. The format for simple machines is depicted in Figure 12, and
the format for hierarchical machines appears in Figure 13. In Figures 12 and
13, the "X.Y" in the section numbers represents the section number for the
entire extended state machine specification. These section numbers Rre as
follows:

Section 3.2 -- Upper Layer Service State Machine.

Section 5.2 -- Lower Layer Service State Machine.

Section 6.3 -- Protocol Entity State Machine.

.--

*X.Y.I. Machine Instantiation Identifier

X.Y.2. State Diagram(S)

X.Y.3. State Vector

X.Y.4. Data Structures

X.Y.5. Event List

X.Y.6. Events and Actions

--

*Where X.Y. is the section number for the extended state machine

Figure 12. Generic Table of Contents for Non-Hierarchical
Extended State Machine Specifications

System Development Corporation
29 larch 1982 -36- TM-71 72 /301 /00

4.---+-

*X.Y.1 TOP LEVEL MACHINE SPECIFICATION

X.Y.1 .1. Machine Instantiatiorn Identifier
X.Y.1.2. State Diagram(s)
X.Y.1.3. State Vector
X.Y.1.4. Data Structures
X.Y.1.5. Event List
X.Y.1.6. Events and Actions

X.Y.2. SUBORDINATE MACHINE 1

X.Y.2.1. Machine Instantiation Identifier
X.Y.2.2. State Diagram(s)
X.Y.2.3. State Vector
X.Y.2.4. Data Structures
X.Y.2.5. Event List
X.Y.2.6. Events and Actions

X.Y.3. SUBORDINATE MACHINE 2

X.Y.3.1. Machine Instantiation Identifier
X.Y.3.2. State Diagram(s)
X.Y.3.3. State Vector
X.Y.3-4. Data Structures
X.Y.3.5. Event List
X.Y.3.6. Events and Actions

X.Y.N. SUBORDINATE MACHINE N-i

X.Y.N.1. Machine Instantiation Identifier
X.Y.N.2. State Diagram(s)
X.Y.N.3. State Vector
X.Y.N.4. Data Structures
X.Y.N.S. Event List
X.Y.N.6. Events and Actions

4.---4.-

*Where X.Y. is the section numb',r for the e-xtended state machine

Figure 13. Generic Table of Cont..1cs for Hierarchical
Extended State Machine Specifications

19 Mrch 9F2 37- System Development Corporation

29 Mrch 982 37-TM-7172/301/00

5.2.1 Format for Simple (Non-hierarchical) Extended State Machines

The formats for each of the sections shown in Figure 12 are described in the
subparagraphs which follow.

5.2.1.1 Machine instantiation Identifier

The machine instantiation identifier is specified as a set of item names which
are to be used to bind an incoming event to thiH .-urect state machine. If
multiple machine instantiation identifiers are used, each identifier must be
accompanied by a list of all states (or state classes) for which the
identifier is valid, and a list of all interaction primitives which may use
the identifier.

5.2.1.2 State Diagrams

State diagrams may be included as a pictorial aid and should be in the form of
a set of nodes and a set of directed arcs between the nodes. Nodes represent
state classes, and arcs represent event classes and transitions. An example
state diagram appears in Section 6.3.2 of the IP specification F]

5.2.1.3 State Vector

The state vector is specified as a set of item names with comments. Each item
name represents an element of the state vector. The comments explain the
purpose of each item or state vector element. Possible values or value ranges
should be included in the definitions of state vector elements if possible.

If a partitioned state vector approach is used, each portion of the state
vector rnu-;t be defined separately. If two or more parts of a partitioned
strate vector are identical, they may be defined only once. See TCPF21, page 21
for an example of a partitioned state vector definition.

5.2.1.4 Data Structures

The data structures for she state machine are specified in Ada. 'Data
structures may be partially or completely untyped where specific formats or
data types are implementation-dependent. It should be noted that Ada is used
as a basis for the data structure syntax, but it is strongly recommended that
only the subset of Ada data types available in other structured languages such
as Pascal be used. In addition to th- pre-defined Ada types, the data types

1queue" and "stack" may also be used. Data structures for the state vector
and interaction primitives should include references to the subsect:.~ns in
which they are initially defined.

5.2.1.5 Event List

The event list consists of a list of all of the interaction primitives which
may be received as input to the state machine. The list contains the names of
the interaction primitives as well as brief comments describing the purpose of
each one. These names must correspond to the primitive names defined in the
"Interaction Primitives" and "Data Structures" sections of the protocol

System Development Corporation
29 March 1982 -.38- TM-7172/301/00

specification.

5.2.1.6 Events and Actions

The events and actions section of the extended state machine specification may
be organized in either a decision table or pseudo-code format. Whichever
approach is chosen should be used throughout the events and actions section of
the state machine. The subparagraphs which follow define the formats to be
used for both the table and pseudo-code approaches, -and provide some general
guidance for choosing the approach which is best suited to the state machine
to be specified.

5.2.1.6.1 Decision Tables vs. Pseudo-Code

Usage of decision tables rather than pseudo-code representation is largely a
matter of design style. Certain general guidelines can be stated, however.
In state machines where every event requires little or no refinement, pseudo-
code is adequate. However, in more complex machines where most events require
non-trivial refinements and can result in a number of different actions,
decision tables are recommendeaI

5.2.1.6.2 Format for Decision Tablt Specification of' Events and Actions

The decision table events and -actions specificatic- is divided into the
following three sections:

1. Decision Tables

2. Decision Functions

3. Decision Table Action Procedures
These three sections, prespnted in the above order, constitute a decision
table type specification of state machine events and actions. The format for
each of these sections is described in the subparagraphs which follow. An
example of an "Events and Actions' section which is organized in the decision
table format appears in Section 6.3.6 of the IP specification FI].

5.2.1.6.2.1 Decision Tables

Decision tables are organized by State. One table e-,tis'c3 foe' each event
within a state.

The columns of the decision table correspond to "Decision Function" outcomes,
and the rows specify "Action Procedures" which are to be invoked based on the
combination of outcomes which appear in the row. The "Decision Function"
names appear at the tops of the columns, and the "Action Procedure" names
appear at the right sides of the appropriq~te rows.

If no decisions are required for the processing of an event within a
particular state, a null table should be used which specifies the "Action
Procedure" to be invoked.

3ystem Development Corporation
29 March 1932 -39- TM-7172/301/00

5.2.1.6.2.2 Decision Functions

Each decision function is specified in a separate subsection of the "Decision

Functions" section. Decision functions specify the following items:

1. Data Structure Elements Examined

2. Return Values (a complete list)

3. The Algorithm

5.2.1.6.2.3 Decision Table Action Procedures

Decision table actions are specified in the form of action procedures. Each
action procedure is specified in a separate subsection of the "Decision Table
Action Procedures" section. Action procedures specify the following items:

1. Data Structure Elements Examined

2. Data Structure Elements Modified

3. The Procedure

Action procedures which contain implementation dependent actions shoul~d be
dle3(ribed in english, with appropriate discussion of various implementation
choices and trade-off guidence.

5.2.1.6.3 Format for Pseudo-Code Specification of Events and Actions

The pseudo-code actions are organized by state and event. Each State should
begin on a new page, with a separate pseudo-code procedure provided for each
Event within the State.

5.2.2 Format for Hierarchical Extended State Machines

The format for hierarchical extended state machines is depicted in Figure 13:
"Generic Table of Contents for Hierarchical Extended State Machine
Specifications". The format requirements for the "Top Level Machine
Specification" are the same as those defined for non-hierarchical extended
state machines in Section 5.2.1 of this document.

The following sections of the top level machine are used by all of its
subordinate machines and need be referenced only in specifying subordinate
machines:

1.* Machine Instantiation Identifier

2. Event List

The formats for the subsections of a subordinate machine specification are
described in the subparagraphs which follow.

System Development Corporation
29 March 1932 -40- TM-7172/301/00

5.2.2.1 Machine Instantiation Identifier

The machine instantiation identifier for the top level machine should be
referenced.

5.2.2.2 State Diagrams

The format for state diagrams in subordinate machines is identical to the
f o rnaa for state diagrams in non-hierarchical machines described in
Section 5.2.1.2 of this document.

5.2.2.3 State Vector

The state vector for subordinate machines is specified in two parts. First,
the state vector elements of the top level machine which are to be used by the
subordinate machine are listed, and then the state vector elements which are
internal to the subordinate machine are specified.

The internal state vector is specified as a set of item names with comments.
Each item name represents an element of the state vector. The comments
explain the purpose of each item or state vector element. Possible values or
value ranges should be included in the definitions of state vector elements if
possible.

5.2.2.4 Data Structures

The only data structure which must be specified for subordinate state machines
is the state vector. All other data structures are identical to those defined
in the top level machine and should be referenced. The state vector data
structure is specified in Ada with optional typing as defined in
Section 5.2.1.4 of this document.

5.2.2.5 Event List

The Event List for the top level machine should be referenced.

5.2.2.6 Events and Actions

The events and actions specification for subordinate state machines may be in
gither a decision table or pseudo-code format. Guidance for selection of one
of these approaches, and the format to be used for each approach, are provided
in Section 5.2.1.6 of this document.

System Development Corporation
29 March 1982 -41- TM-7172/301/00

5.3 CORRESPONDENCE REQUIREMENTS

This report has presented a structure for protocol specifications in which the
protocol is described from several perspectives. This section describes a set
of correspondence requirements, or consistency checks, designed to help insure
that the specifications from these various perspectives are consistent.
Correspondence requirements are provided for the following sections:

1. Upper Layer Service/Interface Specification

2. Lower Layer Service/Interface Specification

3. Protocol Entity Specification

4. Execution Environment Requirements

The other sections of the protocol specification are less formal in nature,
and therefore need no formal correspondence requirements. The correspondence
requirements for the more formal sections listed above are described in the
subparagraphs which follow.

5.3.1 Upper Layer Service/interface Specification

The t'quirements for correspondence between information in the Upper Layer
Service/Interface and information contained in other sections of the protocol
specification are described in the subparagraphs which follow.

5.3.1.1 Interaction Primitives

I. The Primitive Names must correspond to the names used in specifying the
Interaction Primitive Data Structures for the Upper Layer
Service/Interface and Protocol Entity extended state machine
specifications.

2. The Parameter Names which are to be used to bind incoming events to the
appropriate state machine must match the names used in the Machine
Instantiation Identifiers for the Upper Layer Service/Interface, and for
the Protocol Entity extended state machine specifications.

5.3.1.1.1 Service Request Primitives

The Primitive Names must correspond to the names used in specifying the Event
Lists for the Upper Layer Service/Interface, and for the Protocol Entity
extended state machine specifications.

5.3.1.2 Extended State Machine Specification of Services Providedto2e
Layer

5.3.1.2.1 Machine Instantiation Identifier

The Machine Iristantiation Identifier must be included in the parameter list
for every event which may be accepted by the Upper Layer Service state

System Development Corporation
29 M4arch 1982 -42- TM-7172/301/00

machine. The names used for these parameters must correspond to the names
used in the specification of these interaction primitives in the Service
Request Primitives for the Upper Layer Service/lnterfc-'; Specification.

5.3.1.2.2 State Vector

The names used in defining the state vector elements must be the same as the
names used in the declaration of the data structure for the state vector.

5.3.1.2.3 Data Structures

The Data Structures subsection includes Ada data structures (optional typing)
for the state vector, and all of the interaction primitives defined in the
Upper Layer Service/Interface Specification. The names used in defining the
data structures must match the names used for the Primitive Names, Parameters,
and State Vector Elements in the Upper Layer Service/Interface Specification.

5.3.1.2.4 Event List

The Event List for the Upper Layer Service/Interface state machine consists of
the aggregate of the Primitive Names defined in the Service Request Primitives
for the Upper Layer Service/Interface Specification.

5.3.2 Lower Layer Service/Interface :Ikecification

The requirements for correspondence between information in the Lower Layer
Service/Interface and information contained in other sections of the protocol
specification are described in the subparagraphs which follow.

5.3.2.1 Interaction Primitives

1. The Primitive Names must correspond to the names used in specifying the
Interaction Primitive Data Structures for the Lower Layer
Service/Interface and Protocol Entity extended state machine
specifications.

2. The Parameter names which are to be used to bind incoming events to the
appropriate state machine must match the names used in the Machine
Instantiation Identifiers for the Lower Layer Service/Interface, and for
the Protocol Entity extended state machine specifications.

5.3.2.1.1 Service Request Primitives

The Primitive Names must correspond to the names used in specifying the Event
List for the Lower Layer Service/Interface extended state machine.

5.3.2.1.2 Service Response Primitives

The Primitive Names must correspond to the names used in specifying the Event
List for the Protocol Entity extended state machine.

System Development Corporation
29 March 1982 -43- TM-7172/301/00

5.3.2.2 Extended State Machine Specification of Services Required from lower

Layer

5.3.2.2.1 Machine Instantiation Identifier

The Machine Instantiation Identifier must be included in the parameter list
for every event which may be accepted by the Lower Layer Service state
machine. 'Ile rjin*r-les ised for these parameters must correspond to the names
used in the specification of these interaction primitives in the Service
Request Primitives of the Lower Layer Service/Interface Specification.

5.3.2.2.2 State Vector

The names used in defining the state vector elements must be the same as the
names used in the declaration of the data structure for the state vector.

5.3.2.2.3 Data Structures

The Data Structures subsection includes Ada data structures (optional typing)
for the state vector, and all of the interaction primitives defined in the
Lower Layer Service/Interface 3pecification. The names used in defining the
data structures must match the names used for the Primitive Names, Parameters,
and State Vector Elements in the Lower Layer Service/Interface Specification.

5.3.2.2.4 Event List

The Event List for the Lower Layer Service/Interface state machine consists of
the aggregate of the primitive names defined in the Service Request Primitives
for the Lower Layer Service/Interface Specification.

5.3.3 Protocol Entity Specification

The requirements for correspondence between information in the extended state
machine specification of the protocol entity, and information contained in
other sections of the protocol specification are described in. the
subparagraphs which follow.

5.3.3.1 Machine Instantiation Identifier

The Machine Instantiation Identifier must be included in the parameter list
for every event which may be accepted by the protocol entity. The names used
for these parameters must correspond to the names used in the specification of
these interaction primitives in the Service Request Primitives of the Upper
Layer Serv ice/ Interface Specification, and the Service Response Primitives of
the Lower Layer Service/Interface Specification.

5.3.3.2 State Vector

The names used in defining the state vector elements must be the same as the
names used in the declaration of the data structure for the state vector.

IT-

System Development Corporation
29 larch 1982 -44- TM-17172/301/00

5.3.3.3 Data Structures

The Data Structures subsection includes Ada data structures (optional typing)
for the state vector ror i;h. pr-otocol entity, and all of the interaction
primitives defined in the upper and lower layer servicf/iaiterface machines.
The data structures for these interaction primitives should correspond exactly
to the interaction primitive data structures defined in the service/interface
state machines.

5.3.3.4 Event List

The Event List for the protocol entity consists of the aggregate of the
primitive names defined in the Service Request Primitives for the Upper Layer
Service/Interface Specification and the Service Response Primitives for the
Lower Layer Service/Interface Specification.

5.3.4 Execution Environment Requirements

The names of the system calls described in the Execution Environment
Requirements section should match the names used for requesting these services
in the Events and Actions section of the Protocol Entity Extended State
Machine Specification.

System Development Corporation
29 March 1982 -45- TM-7172/301/00

6. BIBLIOGRAPHY

[I] Bernstein, M., "Proposed DoD Internet Protocol Standard," DCEC Protocols
Standardization Program, System Development Corporation TM-7038/205/01,
December 1981. -

[2] Bernstein, M., "Proposed DoD Transmission Control Protocol Standard," DCEC
Protocols Standardization Program, System Development Corporation, TM-
7038/207/01, December 1981.

F3] Bochmann, G., "A General Transition Model for Protocols and Communication
Services," IEEE Transactions on Communications, April 1980.

[4] Bochmann, G., "Finite State Description of Communication Protocols,"
Computer Networks, October 1978.

[5] Bochmann, G. and C. Sunshine, "Formal Methods in Communication Protocol
Design," IEEE Transactions on Communications, April 1980.

[6] Danthine, A., "Protocol Representation with Finite-State Models," IEEE

Transactions on Communications, April 1980.

[7] "Data Processing Open Systems Interconnection--Basic Reference Model,"
Draft Version of ISO/TC97/SC 16 N 537 Revised, November 1980.

[a] "DoD Standard Internet Protocol," Defense Advanced Research Projects
Agency, January 1980.

[91 "DoD Standard Transmission Control Protocol," Defense Advanced Research
Projects Agency, January 1980.

[10] "Preliminary Architecture Report," DCEC Protocols Standardization

Program, System Development Corporation TM-7038/200/00, February 1981.

[11] "Reference Manual for the Ada Programming Language," U.S. Government
Printing Office, 1981.

[12] Shotting, K., "On the Formal Specification of Computer Communication
Protocols," master's thesis.

[13] Simon, G., "Protocol Specification Report," DCEC Protocols
Standardization Program, System Development Corporation TM-7038/204/00, July
1981.

[14] Sunshine, C., "Formal Modeling of Communication Protocols," Working
Paper, University of Southern California Information Sciences Institute,
December 1980.

[15] Tenney, R., "Specification Technique," in Formal Description Techniques
for Network Protocols, Report No. ICST/HLNP80-3, National Bureau of
Standards, June 1980.

